Sparse Matrix Transform for Hyperspectral Image Processing
نویسندگان
چکیده
منابع مشابه
Onboard Image Processing System for Hyperspectral Sensor
Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and we...
متن کاملHyperspectral Image Analysis Using Hilbert-huang Transform
ABSTRACT: Hyperspectral images, which contain rich and fine spectral information, can improve land use/cover classification accuracy, while traditional statistics-based classifiers cannot be directly used on such images with limited training samples. The commonly used method to solve this problem is dimensionality reduction, and this can be done by feature extraction for hyperspectral images. T...
متن کاملFocal-plane processing architectures for real-time hyperspectral image processing.
Real-time image processing requires high computational and I/O throughputs obtained by use of optoelectronic system solutions. A novel architecture that uses focal-plane optoelectronic-area I/O with a fine-grain, low-memory, single-instruction-multiple-data (SIMD) processor array is presented as an efficient computational solution for real-time hyperspectral image processing. The architecture i...
متن کاملSparse Spatio-spectral Representation for Hyperspectral Image Super-resolution
Existing hyperspectral imaging systems produce low spatial resolution images due to hardware constraints. We propose a sparse representation based approach for hyperspectral image super-resolution. The proposed approach first extracts distinct reflectance spectra of the scene from the available hyperspectral image. Then, the signal sparsity, non-negativity and the spatial structure in the scene...
متن کاملMultiscale Union Regions Adaptive Sparse Representation for Hyperspectral Image Classification
Sparse Representation has been widely applied to classification of hyperspectral images (HSIs). Besides spectral information, the spatial context in HSIs also plays an important role in the classification. The recently published Multiscale Adaptive Sparse Representation (MASR) classifier has shown good performance in exploiting spatial information for HSI classification. But the spatial informa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing
سال: 2011
ISSN: 1932-4553,1941-0484
DOI: 10.1109/jstsp.2010.2103924